
Mesh reconstruction from point cloud

Authors: Simone Piazza, Federica Valentini, Eugenio Varetti

September 2023

1. Introduction
Surface reconstruction from point cloud consists
in a collection of algorithms that allow to obtain
a continuous surface starting from a discrete set
of points. When the point cloud given as input is
regular and smooth, most of the methods work
well and produce an accurate reconstruction of
the mesh at issue. However, in practical appli-
cations the point cloud is usually obtained from
scanning and this procedure causes the appear-
ance of imperfections; in this cases, the geometry
becomes really complex and many existing algo-
rithms may fail in these critical points [5].
The aim of this work is to develop a robust
method for reconstructing meshes starting from
a point cloud, even in conditions characterized
by complex geometries.

2. Surface mesh reconstruction
methods

We first review the main algorithms and their
open source implementations for the reconstruc-
tion of a mesh from a 3D point cloud: Ball Piv-
oting Algorithm (BPA) and Poisson Surface Re-
construction.

2.1. Ball Pivoting Algorithm
The Ball Pivoting Algorithm [3] is a method
used to create a surface mesh from a set of
unordered points representing a 3D object or
surface; by using the idea of a ball rolling along
the points, the algorithm efficiently constructs a
triangular mesh that approximates the original
surface.
The concept behind BPA is indeed as follows:
imagine a 3D ball with a user-defined radius ρ
being placed on a point cloud, beginning from a
seed triangle. When the ball comes into contact
with any three points in the cloud (without
passing through those points), it creates a new
triangle. The algorithm then pivots from the
edges of the existing triangles, and each time

it encounters another set of three points where
the ball doesn’t pass through, it generates an
additional triangle. This process continues until
all reachable edges have been attempted, and
then moves on to start from a different seed
triangle, repeating the process until all points
in the point cloud have been considered. A
2D-sketch of how the algorithm works is shown
in Figure 1(a), where a circle of radius ρ pivots
from sample point to sample point, connecting
them with edges.
It’s worth noting that the success and quality of
the BPA depend on the density and distribution
of the input points in the point cloud and
the choice of the initial seed triangle. Proper
parameter tuning is essential to ensure accurate
and reliable results in generating the surface
mesh. Two possible related issues are shown in
Figure 1(b)-(c): in (b) it is shown that if the
sampling density is too low, some of the edges
will not be created, leaving holes; in (c) it is
instead represented the situation where the cur-
vature of the manifold is greater than 1/ρ, thus
some of the sample points will not be reached
by the pivoting ball, and features will be missed.

Figure 1: Sketch of the BPA applied to a 2D
manifold [3].

2.2. Poisson Surface Reconstruction
Algorithm

The Poisson surface reconstruction algorithm [6]
employs an implicit function framework to ad-
dress the surface reconstruction problem. In
summary, the Poisson surface reconstruction al-
gorithm leverages the indicator function and its

1

Mesh reconstruction from point cloud Simone Piazza, Federica Valentini, Eugenio Varetti

gradient to estimate the surface of the model
from oriented point samples. By reconstructing
the surface using this implicit function frame-
work, the algorithm can handle noise and irreg-
ular point cloud data more effectively than BPA,
resulting in a smoother and more accurate sur-
face representation (see A.2 for more details).
The main approach involves computing a 3D in-
dicator function, denoted as χ, which equals 1
at points inside the model and 0 at points out-
side. The reconstructed surface is then extracted
based on an appropriate isosurface.
The core idea is that there exists an integral re-
lationship between oriented points sampled from
the surface of a model (Figure 2, the first) and
the indicator function of the model (Figure 2,
the third). Specifically, the gradient of the
indicator function forms a vector field that is
nearly zero almost everywhere (since the indica-
tor function is constant almost everywhere), ex-
cept at points near the surface. In those regions,
the gradient of the indicator function aligns with
the inward surface normal (Figure 2, the sec-
ond). Consequently, the oriented point samples
can be regarded as samples of the gradient of the
model’s indicator function.
The problem of computing the indicator func-
tion thus reduces to inverting the gradient op-
erator, i.e. finding the scalar function χ whose
gradient best approximates a vector field V⃗ de-
fined by the samples, i.e.

min
χ

||∇χ− V⃗ ||. (1)

The variational problem (1) can be transformed
into a standard Poisson problem, as derived by
Kazhdan et al. in [6]; applying the divergence
operator, the goal becomes to compute a scalar
function χ such that:

∆χ = ∇ · V⃗ . (2)

Figure 2: Poisson surface reconstruction in 2D
[6].

2.3. Numerical results
Each algorithm is tested on two different point
clouds: the first, very smooth and regular, is
sampled from a sphere; the second is sampled
from the so-called Stanford bunny [1], which
represent a challenging benchmark case in
computer graphics. The library we refer to is
Open3d [7] and two different algorithms are
tested on the point clouds at our disposal: Ball
Pivoting Algorithm (BPA) and Poisson Surface
Reconstruction.

Both the BPA and the Poisson algorithm can be
easily tested on Python, since the library Open3d
offers already implemented methods that repro-
duce the algorithms introduced above. Both the
methods require the normals in each point of the
cloud as input: in a first attempt, we tested the
methods giving as input the exact normals gen-
erated with the open source software Paraview
(applying the filters ExtractSurface and
GenerateSurfaceNormals); then, the normals
were estimated taking advantage of the already
implemented methods estimate_normals and
orient_normals_consistent_tangent_plane.
Both the methods are tested on the sphere point
cloud and on the bunny point cloud, first with
the exact normals and then with the estimated
ones.
When using the exact normals all the Open3d
algorithms perform well, in both point clouds,
with the Poisson method (with depth = 8) that
is a bit more accurate with respect to the BPA
(with radius = 0.75 * avg_dist). While for
the sphere case this hold true also when the
normals are estimated, in the case of the bunny
some normals on the left ear are not pointing
outwards as it should be. This behavior reflects
in an inaccurate mesh reconstruction in that
area, both with the BPA and the Poisson
algorithm.

2

Mesh reconstruction from point cloud Simone Piazza, Federica Valentini, Eugenio Varetti

(a) Bunny
estimated
normals.

(b) Bunny
mesh with

BPA.

(c) Bunny
mesh with
Poisson.

Figure 3: Third case: the bunny with estimated
normals.

Given these results, the focus of our work is
on the Poisson method for mesh reconstruction.
This choice is driven by its significant benefits
in generating smooth meshes, especially in com-
plex geometries. While we acknowledge that the
estimation of normals can be challenging in this
method, our project is specifically focused on
addressing this aspect. Our aim is to improve
the accuracy and reliability of normal estimation
within the Poisson method, thereby enhancing
the overall quality of the reconstructed meshes.

3. Numerical reconstruction of
the surface normals

This section introduces two important algo-
rithms for processing point cloud data. The
first one estimates surface normals for each point
while the second ensures a consistent orientation
of these normals across the surface. These tech-
niques are fundamental to several applications,
including 3D reconstruction and object recogni-
tion. This section explores their implementation
and demonstrates their effectiveness through vi-
sual representations.

3.1. Estimating Normal direction
The method of normal estimation is based on the
idea of identifying local neighborhoods and find-
ing a basis to describe them, following a PCA-
like approach.
Specifically, for each point i in the point cloud:

1. Identify the set Ω
(i)
K consisting of the point

itself and its K neighbors (the default value
of the algorithm is K = 30).

2. Compute the covariance matrix Σi relative
to Ω

(i)
K .

3. Decompose Σi ∈ R
3×3 into eigenvalues-

eigenvectors in order to obtain eigenvectors
associated with the principal directions of

the "local" point cloud.
4. Select the eigenvector associated with the

smallest eigenvalue and assign it as the nor-
mal of point i.

In Figure 4 a 2D sketch of the explained proce-
dure is reported, with the point i displayed in
red and its corresponding normal represented as
the orange arrow v.

Figure 4: Schematic representation (in 2D) of
the Open3d algorithm for the estimation of the
normals.

3.2. Orienting Normal orientation
Once the normals in the point cloud have been
estimated, another method is required to con-
sistently orient the normals to the point cloud
(as reported in Section 3.3 of [4]). This opera-
tion requires an input parameter, an integer K,
which represents the number of neighbors each
point should consider. The algorithm executes
the following steps:

1. create a Delaunay graph from the point
cloud where edges weights are the Euclidean
distance between points;

2. find the minimum spanning tree with
Kruskal algorithm (see Appendix A.1);

3. for every point, find its K nearest (in terms
of Euclidean distance) neighbors and add
them to the resulting graph if they were not
present in the initial Delaunay graph;

4. for every pair of connected points i, j substi-
tute the weights with: normal_weights =
1− |ni · nj |;

5. extract the final minimum spanning tree
with Kruskal algorithm;

6. set an initial point - the one with the high-
est z coordinate - and orient its normal n0

according to z-versor êz = (0, 0, 1) i.e such
that n0 · êz > 0

7. orient all the normals in the point cloud fol-
lowing the tree, i.e by ensuring that the dot
product between the father node and the
child nodes is greater than 0.

3

Mesh reconstruction from point cloud Simone Piazza, Federica Valentini, Eugenio Varetti

In Figure 5 the first part of the above-mentioned
algorithm is applied to a simple case, as an ex-
ample. The final graph is given by the union of
the red one (from Kruskal algorithm) and the
blue one (from KNN algorithm).

(a) Delaunay
graph.

(b) MST
obtained with

Kruskal
algorithm.

(c) Final graph
with KNN

algorithm (K =
4).

Figure 5: From the point cloud to the graph
used to orient the normals.

4. Our contributions to Open3d
As showed by the results reported in the Section
2, when the point cloud becomes more complex
the algorithm for the orientation of the normals
fails, and consequently the reconstructed mesh is
inaccurate. After a deep analysis of the function
orient_normals_consistent_tangent_plane,
whose key points have been reported in subsec-
tion 3.2, we identified two main criticalities:

1. considering simply the Euclidean distance
may be inaccurate in some situations;

2. taking as initial point the one with the
highest z coordinate may cause problems in
complex meshes.

4.0.1 Selection of the metric

As it is widely known in statistics, the Euclidean
distance is not always the optimal metric for ex-
pressing the similarity between two points. This
holds true in the context of our numerical test
cases.
Let’s consider a simple 2D geometry consisting
of two parallel surfaces, denoted as S1 and S2,
as illustrated in Figure 6a. Taking the refer-
ence point x0 (depicted in red) on surface S1, we
observe that when considering the first K near-
est neighbors based on the Euclidean distance,
points on surface S2 are misclassified and incor-
rectly identified as neighbors of x0. This mis-
classification leads to an inaccurate orientation
of the normals associated with the lower surface,
as depicted in Figure 6b. This issue extends to

3D metrics, even in the case of more complex ge-
ometries or critical points such as cusps or steno-
sis.

(a) K=5 neighbors of x0. Some
points are not real neighbors.

(b) Misorientation of the normals.

Figure 6: Illustration of the misclassification is-
sue in the Euclidean distance metric.

To address this issue, an alternative metric can
be considered to accurately identify the true
neighbors of a point x0 in such geometries. As-
suming the normal direction is correct, we can
utilize the tangent plane defined by x0 and its
normal n0. We define the distance between any
point x and x0 as follows:

dist(x,x0) = ||x− x0||2 + λ |(x− x0) · n0|

where λ ∈ R≥0. In this metric, the parameter
λ penalizes the distance between x and the tan-
gent plane. Specifically, as λ increases, the dis-
tance between x0 and a point x not lying on the
plane becomes greater. Graphically, the "pseu-
dosphere" - which, by definition, has points on
its surface equidistant from the center - tends
to flatten along the plane’s axis, as depicted in
Figure 7.

4

Mesh reconstruction from point cloud Simone Piazza, Federica Valentini, Eugenio Varetti

Figure 7: New concept of distance. Blue points
are now the K nearest neighbours

An alternative solution, which can also be com-
bined with the previous one if necessary, is to ex-
clude neighbors that do not satisfy certain con-
straints. These constraints can be specific to the
problem at hand and depend on the character-
istics of the data or the desired properties of the
neighbors.
For example, in the context of a 2D/3D geome-
try, we can exclude neighbors that violate a cer-
tain angle threshold with respect to the normal
direction. This means that only points within a
certain range of angles from the normal vector
will be considered as valid neighbors. By im-
posing such constraints, we can refine the set of
neighbors and ensure that only relevant points
are included.
In particular, let x0 be the reference point, n0

its associated normal, and x ∈ Ω be any point in
the point cloud. The set of potential neighbors
of point x0, is defined as:

Ω(0)
α0

= {x ∈ Ω :
|(x− x0) · n0|
||x− x0||2

≤ cos(α0)}.

where α0 is the threshold angle1. As shown in
Figure 8, for each point in the domain, the space
is partitioned into two subsets: an acceptance
region where neighbors can be selected, and a
rejection region where, if neighbors exist, they
will not be considered.

1Given the two vectors p and q, it holds p · q =
|p||q| cos(α).

Figure 8: Only points within the acceptance re-
gion (green) are candidate neighbors.

This approach can be further extended to in-
clude other constraints based on specific proper-
ties or conditions that need to be satisfied by the
neighbors. By carefully defining and applying
these constraints, we can enhance the accuracy
and reliability of the neighbor selection process.
Combining multiple approaches, such as incor-
porating a modified distance metric along with
constraint-based filtering, can provide a compre-
hensive solution to accurately identify the true
neighbors in complex geometries or critical point
scenarios. The specific combination and adjust-
ment of these techniques would depend on the
characteristics of the data and the requirements
of the problem at hand.

4.0.2 Selection of the starting point

Once the orient_normals_consistent_tangent
_plane function defines the minimum spanning
tree (MST), it initiates the correct normal
orientation process. Starting from the point
with the highest z-coordinate, the algorithm
aligns its normal vector to have a positive dot
product with the z-axis (0, 0, 1). Subsequently,
it follows a path determined by the connections
of the starting point within the MST. Along
this path, the algorithm sequentially orients
the normals of the nodes to ensure a positive
dot product with the normal of the calling
node. However, the first stage of this method
can encounter issues, particularly in the upper
regions of the mesh, where irregularities and
uneven point distribution are more prevalent.
Specifically, when starting from these regions,
there is a risk of incorrectly orienting the first
normal, leading to a subsequent flip of all the
normals by 180 degrees. As a result, this prop-
agation of inaccurately oriented normals along

5

Mesh reconstruction from point cloud Simone Piazza, Federica Valentini, Eugenio Varetti

the connected path significantly undermines the
overall quality of mesh reconstruction.
To reduce the likelihood of encountering this
issue, we decided to initiate the orientation of
the normals from the base of the point cloud
with respect to the z-axis. Similar to the
original algorithm, which consistently oriented
the first point towards the vector (0,0,1), we
now consistently orient the first point towards
(0,0,-1).

5. Our implementation
In order to apply the methods discussed in
4.0.1 and 4.0.2, we had to make changes
to the source code of the Open3D li-
brary [7]. Specifically, we modified the
OrientNormalsConsistentTangentPlane func-
tion, whose original algorithm is described in
subsection 3.2. We extended the list of inputs
by adding lambda and cos_alpha_tol to the
parameter list, assigning default values of 0
and 1, respectively, to preserve the original
functionality of the library. We refined the
construction of the minimum spanning tree
(MST) used in the normal orientation process.

Firstly, we modified the edge weights of the
Delaunay Graph. Consistently with Section
4.0.1, we introduced a penalty term to the orig-
inal weight, dependent on lambda, and a con-
straint on the relative positioning of two vertices
on an edge, given by cos_alpha_tol.
Subsequently, during the expansion phase of the
MST generated by the Kruskal’s algorithm (see
A.1), we introduced two constraints. After find-
ing the K-nearest neighbors (KNN) of a point p
in the point cloud, we check if, for each found
neighbor pk, where k=1,...,K:
• the edge defined by the two points (p, pk)

is not already present in the set of edges of
the Delaunay Graph;

• the point pk resides within the acceptance
region, i.e.,

|(p− pk) · n0|
||p− pk||2

≤ cos_alpha_tol; (3)

• the point pk is not an outlier in terms of
distance from the tangent plane defined by
p and n0 within the neighbor set Ω

(p)
K =

{pk}Kk=1, i.e.,

|(p− pk) · n0| ≤ Q3 + 1.5 ∗ IQR,

where Q3 and IQR are the third quartile
and interquartile range, respectively, of the
set Ω

(p)
K .

In such cases, the edge (p, pk) will be added to
the resulting graph.

Secondly, we modified the starting point
of the traversal_queue, a queue used to
orient the normals following the final MST; as
described in Section 4.0.2, indeed, we start from
the point with the lowest z-coordinate, and
then orient all the other normals accordingly.
An overview of the modified algorithm
is presented in A.3. For more de-
tailed information, the modified code
can be found in our GitHub fork at:
https://github.com/eugeniovaretti/Open3D.

6. Numerical results
As confirmed by the mesh obtained as output,
our changes to the original algorithm perform
well if tested on the point cloud considered in
this work. Thanks to the correct orientation of
the outward normals in all the regions, indeed,
the Poisson surface reconstruction algorithm re-
turns as output an accurate mesh, also in the
area that presented criticalities before. The re-
sults reported in Figure 9 have been obtained
running our new code; the output mesh is com-
parable both following a pure penalization ap-
proach (with λ = 10) and imposing an angle
threshold (with α = 60◦ −→ cosα = 0.5).

(a) Point cloud
with estimated

normals.

(b) Mesh given
as output by

Poisson
algorithm.

(c) Zoom
on the
critical

region of
the ear.

Figure 9: Poisson reconstruction using the nor-
mals estimated with our improvements.

In order to have full awareness of the obtained
results and to appreciate more the improve-
ments to the existing library, some comparisons
on the number of misoriented normals in the
different cases is performed. We consider a
normal as misoriented when the real normal

6

Mesh reconstruction from point cloud Simone Piazza, Federica Valentini, Eugenio Varetti

and the estimated one form an angle greater
than 90◦.
We depict in yellow all the points in the cloud
whose normal has been misoriented by the
algorithm, while in purple all the remaining
points, for which we consider the orientation of
the normal as acceptable. From Figure 10 we
can conclude that both our approaches perform
well, with the number of misoriented normals
that has considerably decreased with respect to
the original situation.

(a) Original
algorithm

O3D

(b) Improved
algorithm,

with λ = 10

(c) Improved
algorithm,

with
cos(α0) = 0.5

Figure 10: Visualization of misoriented normals.

From a more quantitative point of view, in-
stead, the error angle for each point of the
cloud is reported in a boxplot, for all the
three cases (Figure 11). It is clear how the
number of outliers have significantly reduced
from the original Open3d implementation to
our modifications, both in the "λ-approach"
and in the "cosα-approach". If we fix also here
90◦ as threshold for considering a normal as
misoriented, the number of mistaken normals
passes from 169 in the original algorithm to 9
and 12 in our implementations with λ and cosα,
respectively.

(a) Original algorithm O3D

(b) Improved algorithm,
with λ = 10

(c) Improved algorithm,
with cos(α0) = 0.5

Figure 11: Boxplots of the error angles in the
three cases, with the threshold of 90◦.

Once the analysis of the pathological bunny
point cloud was completed, we conducted
additional tests on the algorithms using a
different test case that, according to our pre-
liminary analysis, could present challenges for
the original algorithm: the reconstruction of an
aortic coarctation, a geometry available in the
Vascular Model Repository [2] .

Since the original dataset was very dense (ap-
proximately 62,000 points), we imposed a high
number K of neighbors to stress-test the algo-
rithm.
With the same value of K, the results were con-
sistent with our expectations, demonstrating the
robustness of the modified algorithm. As shown
in Figure 12, the stenosis point caused orienta-
tion problems that propagated throughout the
entire domain.

7

Mesh reconstruction from point cloud Simone Piazza, Federica Valentini, Eugenio Varetti

(a) Original
algorithm

O3D.

(b) Original
algorithm

O3D.

(c) Misoriented
normals.

(d) Modified
algorithm with

λ = 10, cos(α0) = 0.5

(e) Misoriented
normals.

Figure 12: Results for the original and improved
algorithm.

7. Conclusions and future
works

The main improvement brought about by our
new algorithm is illustrated in Figure 11: when
we compare the number of nearest neighbors,
K, our extension of the algorithm outperforms
the original. Specifically, by defining as "mis-
oriented" those normals misaligned by an an-
gle greater than 90◦ with respect to the exact
normal, in the original algorithm, there are 169
misoriented normals, whereas in our implemen-
tations with λ and cosα, they are only 9 and 12,
respectively.
This is the primary advantage of the new algo-
rithm: it exhibits more consistency and inde-
pendence from the chosen parameter K, which
would typically require a trial and error proce-
dure.
Possible future work might target the limitation
represented by the fact that the library heav-
ily relies on the class KDTree (K-dim tree); the
choice of the parameters that this class takes as
input, first of all the number of neighbours K,
considerably influences the mesh that is given
as output. However, the correct choice of such
parameters is not trivial at all and moreover its
modification would require a deep knowledge of

the library that only expert users have; thus,
usually the default value of knn = 30 is kept ir-
respective of the characteristics of the specific
point cloud, even if it could give inaccurate out-
puts. A possible improvement can thus be to
allow the user to give the number of knns as in-
put in an user-friendly way; in this manner, the
choice of the best parameter for the KDTree class
is eased a lot, with improvements in the final re-
sult.
Moreover, concerning the choice of the starting
point for the orientation of all the normals, we
changed it from the one with the maximum z
coordinate to the one with the minimum z co-
ordinate; we are aware that this may not be the
ideal solution as it still heavily relies on the ori-
entation of the geometry in space. Introducing a
parameter to reverse the orientation of all nor-
mals could address this problem, but it would
remain a manual solution requiring users to rec-
ognize the algorithm’s weakness and adjust it
interactively. Therefore, we have identified two
potential automated solutions.
The first solution involves implementing an au-
tomatic check for orientation from within the
volume to be reconstructed. In this case, the
main challenge would be to accurately identify
the interior of the volume and subsequently per-
form consistent checks on important neighbor-
ing points. One way to envision the resolution
is to imagine a balloon inflating from the inside,
touching the innermost points of the point cloud.
The second solution is to identify a sufficiently
regular point on the mesh and consistently orient
its normal. The challenge here lies in determin-
ing how to measure local regularity in a point
cloud; some ideas are for example to look at the
local curvature in each point or at local density
of the points in the cloud.
Overall, these alternatives aim to mitigate the
problem without relying solely on user inter-
vention, offering more automated approaches to
handle the orientation of normals.

8

Mesh reconstruction from point cloud Simone Piazza, Federica Valentini, Eugenio Varetti

References
[1] The Stanford 3D Scanning Repository.

[2] Vascular model. https://www.
vascularmodel.com/. Accessed: June
16, 2023.

[3] Fausto Bernardini, J. Mittleman, Holly
Rushmeier, Cláudio Silva, and Gabriel
Taubin. The ball-pivoting algorithm for
surface reconstruction. Visualization and
Computer Graphics, IEEE Transactions on,
5:349 – 359, 11 1999.

[4] H. Hoppe, T. Derose, T. Duchamp, J. Mc-
donald, and W. Stuet-zle. Surface recon-
struction from unorganized point clouds.
1992.

[5] Zhangjin Huang, Yuxin Wen, Zihao Wang,
Jinjuan Ren, and Kui Jia. Surface recon-
struction from point clouds: A survey and
a benchmark. Eurographics Symposium on
Geometry Processing, 2022.

[6] M. Kazhdan, M. Bolitho, and H. Hoppe.
Poisson surface reconstruction. Eurographics
Symposium on Geometry Processing, 2006.

[7] Qian-Yi Zhou, Jaesik Park, and Vladlen
Koltun. Open3D: A modern library for 3D
data processing. arXiv:1801.09847, 2018.

9

https://www.vascularmodel.com/
https://www.vascularmodel.com/

Mesh reconstruction from point cloud Simone Piazza, Federica Valentini, Eugenio Varetti

A. Appendix
A.1. Kruskal Algorithm
Kruskal’s algorithm is used to reduce the initial
graph to the connected one that minimizes the
total weight. The algorithm is reported in Algo-
rithm 1.

Algorithm 1 Kruskal’s Algorithm
1: Sort all the edges of the graph in non-

decreasing order of their weights.
2: Create a separate set for each vertex of the

graph. Initially, each vertex is its own set.
3: while MST has fewer than |V |−1 edges do
4: Consider the next edge, e, in the sorted

order.
5: if Adding edge e does not create a cycle

then
6: Add edge e to the Minimum Spanning

Tree (MST).
7: Merge the sets of the two vertices of the

edge.
8: end if
9: end while

A.2. From normals to mesh
The Poisson surface reconstruction algorithm, as
explained, begins by solving the Poisson prob-
lem, taking into account the surface normals, to
compute a 3D indicator function χ. This in-
dicator function distinguishes points inside the
model (assigned a value of 1) from points outside
(assigned a value of 0). The reconstructed sur-
face is obtained by extracting the isosurface of
the indicator function corresponding to a specific
threshold, capturing the shape and geometry of
the underlying surface.
Once the indicator function is computed, the al-
gorithm applies the marching cubes technique.
This technique divides the volumetric data into
small cubes and examines the scalar values at
the vertices of each cube, considering the infor-
mation from the indicator function and the sur-
face normals. Based on these values, the algo-
rithm determines the configuration of each cube
and uses a lookup table to determine the appro-
priate triangulation for its surface.
By repeating this process for all cubes in the
volumetric data, the algorithm generates a mesh
representation that closely approximates the re-
constructed surface.

A.3. Final Algorithm

Algorithm 2 OrientNormalsConsistentTangent-
Plane(int K, double λ, double cos(α0)) - Ex-
tended version
1: Input: Point cloud with estimated normals,

K, λ, cos(α0)
2: Create a Delaunay graph where edge weights

are the Penalized Euclidean distance be-
tween points.

3: Find the minimum spanning tree with
Kruskal’s algorithm.

4: for every point p in the point cloud do
5: Find its K nearest neighbors (in terms of

Euclidean distance).
6: for every edge (p, pk) do
7: Add the edge to the resulting graph if:

• the edge (p, pk) is not (already)
present in the initial Delaunay
graph;

• the point pk respects Property (3)
• the point pk is not an outlier in

terms of distance from the plane
wrt the set of K neighbours

8: end for
9: end for

10: for every pair of connected points i and j
do

11: Substitute the edge weights with 1− |ni ·
nj |, where ni and nj are the normals at
points i and j, respectively.

12: end for
13: Extract the final minimum spanning tree

with Kruskal’s algorithm.
14: Set an initial point x0 as the one with the

lowest z coordinate.
15: Orient its normal n0 such that n0 · êz > 0,

where êz = (0, 0,−1).
16:
17: for every node in the minimum spanning

tree (except the initial point) do
18: Orient the normal of the current node by

ensuring that the dot product between the
parent node’s normal np and the current
node’s normal ni is greater than 0:

np · ni > 0

19: end for
20: Output: Point cloud with consistently ori-

ented normals.

10

	Introduction
	Surface mesh reconstruction methods
	Ball Pivoting Algorithm
	Poisson Surface Reconstruction Algorithm
	Numerical results

	Numerical reconstruction of the surface normals
	Estimating Normal direction
	Orienting Normal orientation

	Our contributions to Open3d
	Selection of the metric
	Selection of the starting point

	Our implementation
	Numerical results
	Conclusions and future works
	Appendix
	Kruskal Algorithm
	From normals to mesh
	Final Algorithm

